Optimal Constrained Stationary Intervention in Gene Regulatory Networks
نویسندگان
چکیده
A key objective of gene network modeling is to develop intervention strategies to alter regulatory dynamics in such a way as to reduce the likelihood of undesirable phenotypes. Optimal stationary intervention policies have been developed for gene regulation in the framework of probabilistic Boolean networks in a number of settings. To mitigate the possibility of detrimental side effects, for instance, in the treatment of cancer, it may be desirable to limit the expected number of treatments beneath some bound. This paper formulates a general constraint approach for optimal therapeutic intervention by suitably adapting the reward function and then applies this formulation to bound the expected number of treatments. A mutated mammalian cell cycle is considered as a case study.
منابع مشابه
Probabilistic Boolean Networks - The Modeling and Control of Gene Regulatory Networks
probabilistic boolean networks the modeling and control of probabilistic boolean networks the modeling and control of probabilistic boolean networks: the modeling and control probabilistic boolean networks society for industrial probabilistic boolean networks the modeling and control of probabilistic control of boolean networks with multiple from boolean to probabilistic boolean networks as mod...
متن کاملModeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کاملPolynomial-time algorithm for learning optimal tree-augmented dynamic Bayesian networks
The identification of conditional dependences in longitudinal data is provided through structure learning of dynamic Bayesian networks (DBN). Several methods for DBN learning are concerned with identifying inter-slice dependences, but often disregard the intra-slice connectivity. We propose an algorithm that jointly finds the optimal inter and intra time-slice connectivity in a transition netwo...
متن کاملFailed"nonaccelerating"models of prokaryote gene regulatory networks
Much current network analysis is predicated on the assumption that important biological networks will either possess scale free or exponential statistics which are independent of network size allowing unconstrained network growth over time. In this paper, we demonstrate that such network growth models are unable to explain recent comparative genomics results on the growth of prokaryote regulato...
متن کاملH∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008